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Abstract: Acidic mine drainage (AMD) discharged from the abandoned Smolník mine (Pech shaft,
Slovakia) contaminates surface water in the Smolník creek due to the decreasing pH and the pro-
duction of heavy metals. Mixing AMD with surface waters results in an increase in pH, which
affects the metal precipitation. Using statistical methods, the effect of pH on the concentration of
selected metals (Fe, Mn, Al, Cu and Zn) in the water of the contaminated Smolník creek is described
in this work. Polynomial curves were used to identify trends in pH and metal concentration in the
surface water. The analysis showed that the second-degree polynomial functions as a candidate for
explaining metals’ concentration based on the measured surface water’s pH with a goodness of model
fit, based on a coefficient of determination ranging from 0.4 to 0.7 depending on the determined metal
concentration and location.
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1. Introduction

A specific source of environmental contamination is acid mine drainage (AMD). Its
production represents one of the biggest environmental problems already during mining,
but especially after mining in polymetallic deposits containing sulfides. When exposed
to water and oxygen, most sulfide minerals can oxidize, producing sulfuric acid, metal
sulfates that can contaminate surface and groundwater [1]. The source of AMD is primarily
the remains of mining activities, e.g., flooded shafts and tunnels, heaps and tailings ponds,
representing so-called old mining loads [2,3].

Mining waters are formed during mining, but especially after the end of mining of
mineral raw materials in the contact zones of the water and geological environment [4–6].
The amount and composition of minerals in the deposit have a significant influence on the
pH of mine water [7,8]. Acid mine drainage (AMD) with pH values below 4.5 occur mainly
in sulphide deposits. Their formation is also influenced by iron and the sulfur oxidizing
bacteria of the genus Acidithiobacillus. They are autochthonous microorganisms that occur
in ore and coal mines where pyrite is found [9]. Metal cations dissolved in AMD are
transported to surface waters. Dissolved Fe2+ ions are oxidized on the surface by oxygen
from the air to Fe3+. This chemical reaction is accompanied by the formation of ocher
precipitates (e.g., goethite, jarosite and schwertmanite), which absorb some of the metals
on their surface [10]. Heavy metals and sulfates present in AMD contaminate groundwater
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and surface water, which has a negative impact not only on aquatic organisms, but also on
soil contamination and the food chain [11].

There are several mines with AMD generation in the Slovak Republic. The Smolník
deposit is one of the historically best-known and richest Cu-Fe ore deposits in Slovakia.
After the end of mining in 1990, the mine was flooded, and in 1994, AMD penetrated the
surface water, which had a negative impact on aquatic organisms. Because it is a partially
open geochemical system into which rainwater and surface water flow, the formation of
AMD in the Smolník area cannot be stopped and there is no chance of improving the
situation [12,13]. Therefore, the abandoned mining area of Smolník in Slovakia currently
belongs to the old environmental burden. The oxidation of pyrite and formation of free
sulfuric acid causes water acidification and the dissolution of heavy metals from metal ores.
This AMD acidifies and contaminates the waters of the Smolník creek, which transfers
pollution to the Hnilec basin [12,14–16]. Increasing the pH of water is associated with the
precipitation of metals in the form of hydroxides. Precipitated metals are subsequently
accumulated in sediments and can be released again into the aquatic environment upon
changes in hydrobiological and physicochemical conditions, such as pH, redox potential,
and salinity [11,17–19]. The influence of physicochemical conditions on the accumulation
of metals in bottom sediments is also the subject of many investigations [20–25]. They are
mainly aimed at studying the influence of pH, redox potential or salinity on the behavior
of metals in the water environment.

Polynomial curve fitting is a valuable statistical technique employed in the analysis
of chemical results. This equation can help to model the relationship between variables,
estimate unknown values, and identify trends or patterns within the chemical data [26].

The aim of this study is to use statistical methods to analyze the effect of acidic mine
drainage from the Pech shaft (Smolník mine) on the quality of surface water in the Smolník
creek, as well as the effect of pH on the concentration of selected metals in the water.

2. Materials and Methods

Two sampling sites along the Smolník creek were selected for the study of surface
water quality (1—approx. 200 m from the Pech shaft, 2—tributary to Hnilec (approx. 9 km)).
AMD quality from the Pech shaft was also monitored. The samples were taken in the
years 2006–2021. Surface water samples were filtered into a 100 mL plastic container and
acidified with 2 mL of ultrapure HNO3 (67%).

The physical and chemical parameters of the water were determined by a METTLER
TOLEDO multifunctional device in situ and the chemical analysis of the water by the AAS
method (SpectrAA-30, Varian, Australia).

The results of the measurements and analyses were further evaluated by statistical
methods. For the determination of the dependency between concentrations of individual
metals and the resulting water pH we have used polynomial fitting. Multiple degrees of
polynomials were tested with the coefficient of determination (r2) being the main criterion
for curve selection. Mean squared error (MSE) was used as a secondary, supportive,
polynomial selection indicator.

3. Results and Discussion

The average values of metal concentrations and pH values of the surface water (sam-
pling points 1 and 2 from the Smolník creek and acidic mine water from the Pech shaft)
during the years 2006–2021 are shown in Table 1. The results are compared with the limit
values according to Regulation of the Government of the Slovak Republic no. 269/2010
Coll. Table 1 shows that AMD discharge from the Pech shaft has a permanent negative
effect on the water quality in the Smolník creek (samples 1 and 2). Of the monitored metals,
the concentrations of elements Fe, Mn, Al, Cu and Zn exceed the limit values. The increase
in the concentration of metals is accompanied by a decrease in the pH of the surface water.
At the same time, chemical analysis showed that all monitored parameters are exceeded in
the AMD.
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Table 1. The results of chemical analysis of water in 2006–2021—Smolník creek and Pech shaft.

Sampling Site

Parameter Pech Shaft 1 2 Limits

Fe 322.70 ± 87.60 12.7 ± 8.9 5.46 ± 5.64 2.00
Mn 25.30 ± 6.30 1.17 ± 0.74 0.91 ± 0.62 0.30
Al [mg/L] 65.1 ± 19.4 1.17 ± 1.60 0.35 ± 0.72 0.20
Cu 1.51± 0.74 0.097 ± 0.116 0.043 ± 0.64 0.02
Zn 7.23 ± 2.27 0.349 ± 0.250 0.254 ± 0.213 0.10

pH 4.0 ± 0.1 5.8 ± 1.1 6.1 ± 1.1 6.0–8.5

As can be seen from Table 1, the concentrations of iron, manganese, aluminum, copper
and zinc were exceeded in the Smolník creek. It is known from the literature and our previ-
ous studies [11,13,18,20,24] that the behavior of metals in aqueous solutions is influenced
by pH, which affects their precipitation and deposition in sediments. Knowledge about
the precipitation intervals of selected metals was used to study the effect of pH on the
concentration of Al, Cu, Zn, Mn, Fe in the surface water of the Smolník creek.

The statistical analysis was performed for the metal concentrations in water samples
taken at sampling points 1 and 2 in the Smolník creek (Table 1). In Figures 1–5 are graphi-
cally shown dependences of the concentration of the evaluated metals depending on the
pH of the surface water.
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In order to statistically evaluate all measurements from both measurement sites for
multiple degrees of polynomials, we fitted the respective polynomial curves with a scikit-
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learn toolbox library available for the programming language Python. The computational
evaluation allowed us to test in multiple iterations the polynomial curves of multiple
degrees, originally from degree 2 to 10. As a threshold for the best curve candidates’
selection, r2 was set to a minimum of 0.5; only for Al and Fe did we need to lower the
threshold to 0.45 in the case of Al and to 0.40 for Fe. This was eliminated for all studied
chemical elements polynomials of a degree higher than 3. Afterwards, we evaluated r2 in
combination with a mean squared error (MSE) to fine-tune the obtained results. The best
fitted curves, all with a second-degree polynomial function, are characterized in Figures 1–5.

Figure 1 shows that aluminum concentration decreases with increasing pH. This is
in agreement with the literature where aluminum hydroxide precipitates at pH > 5.0 but
redissolves at pH > 9.0 [27,28]. The decrease in Al concentration in Figure 1b is also related
to the distance of the sampling point from the source of contamination and the longer time
of interaction of the contaminant with the water. Looking at the second-degree polynomial
curves for Al, we can observe that pH explains the concentration better for site 1—with r2
(0.5975) being higher than for the second site (0.4772).

The precipitation of copper and thus the reduction in its concentration in the water
(Figure 2) was carried out in accordance with the literature, according to which copper
precipitates at pH > 4 and completely precipitates at pH 6 [19,20]. As can be seen in
Figure 2, the concentration of Cu at pH 6 was lower than 0.05 mg/L. Concentrations of
copper in both sites have the best explainability by pH from all analyzed metals. Similarly
to aluminum, site 1 has a stronger relation between pH and concentration than site 2.

According to [19,27], zinc precipitates in the pH range of 5.5–7. This was reflected in a
decrease in concentration below 0.1 mg/L at a pH above 6 (Figure 3). Zinc has the second
best explainability of a relationship between water pH and the concentration of the metal,
right after copper. In this case, site 2 concentrations are better explained by pH (r2 = 0.6332)
than the concentrations of the first site (r2 = 0.5846) by using second-degree polynomials.

Manganese is a common pollutant in mine waters worldwide [29]. Although the
hydroxide precipitation of metal cations is usually an effective method for their elimination
from aqueous solutions (eg Fe, Cu, Zn, Ni), it is not effective in reducing Mn concentrations
below 1 mg/L. In the work [30], various procedures for removing Mn from wastewater from
different sources and compositions are presented, while confirming the highest efficiency at
pH 8.5 and higher. This statement is not completely valid for Mn in surface waters. Figure 4
shows the decrease in Mn concentration below 0.5 mg/L at pH around 7. Similarly to zinc,
the manganese concentrations can also be better explained by the pH for the second site. In
this case, the r2 coefficient is between 0.5 and 0.6.

Iron should occur in AMD mainly as an Fe2+ cation, which precipitates at pH < 8.5 [27].
The fact that iron precipitated throughout the studied interval was caused by the oxidation
of Fe2+ to Fe3+ by atmospheric oxygen and the precipitation of Fe(OH)3, which starts at
pH 3.5. The values of the determination coefficients r2 < 0.5 for the dependence of Fe
concentration on pH (Figure 5) confirm a different course of Fe precipitation due to the
simultaneous oxidation of Fe2+ to Fe3+ [18,20]. This simultaneous oxidation explains the
worst goodness of fit for the second-degree polynomial curves we use in this study. The
relationship was the weakest of all studied metals.

4. Conclusions

The location of the Smolník mine is included among the old environmental burdens
due to AMD production and surface water contamination in the Smolník creek. This fact
was confirmed by exceeding the limit values of pH and the monitored concentrations
of heavy metals in the surface water according to Slovak legislation. Fluctuations in the
pH value also affect the concentration of heavy metals (e.g., Fe, Cu, Zn, Al, Mn) in the
Smolník creek polluted by acid mine drainage, which was confirmed by the presented
results. Statistical analysis showed that pH has a significant effect on the concentration of
metals in surface water. It is important to note that this relationship cannot be properly
interpreted without a deeper understanding of the chemical properties of the studied
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metals. The weakest link observed in iron can be explained by the simultaneous oxidation
of Fe2+ to Fe3+. On the other hand, the best explainability of metal concentration by pH
was achieved for copper, using a second-degree polynomial.
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