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Abstract: The purpose of our research is to evaluate the agroecological condition of soils under
long-term irrigation (over 50 years) and to improve existing measures to slow down degradation pro-
cesses by introducing phosphogypsum. The possibility of simultaneously addressing the ecological
issue of using large amounts of phosphogypsum waste and the agronomic characteristics of slowing
or eliminating salinisation processes in irrigated soils has been studied and justified. The research
methodology was based on the comparison of different meliorative doses of phosphogypsum under
the following conditions: by the amount of exchangeable sodium that should displace calcium in the
calculated soil layer; by the coagulation limit; and by the absorption norm and the corresponding
amount of sodium coming with irrigation water. To determine water-soluble salts (anions, cations)
and pH level, a water extract was utilized. Multi-year studies to determine the impact of phosph-
ogypsum on irrigation-salinised soils with and without irrigation showed positive changes in the
anion–cation composition of water extraction, resulting in a reduction in the degree of the salinity
of these soils. It was established that in chernozem soils under irrigation, the sodium adsorption
ratio decreases by 74.5% compared to the control indicators, and without irrigation, by 23%. The
best results in the displacement of exchangeable sodium were observed when phosphogypsum was
applied at a dose calculated by the coagulation limit without irrigation and with irrigation—by the
absorption norm.

Keywords: phosphogypsum; saline soils; soil leaching; irrigation; chemical amelioration

1. Introduction

The constant population growth of the planet contributes to the increased anthro-
pogenic pressure on natural resources. In the forecast perspective [1], by 2050, this will
lead to an expansion of degraded lands and a 10% reduction in the productivity of agricul-
tural crops. The annual loss of ecosystem services from soils will contribute to a 10–17%
reduction in global gross domestic product. Global climate change and the associated risks
to food security prompt the expansion of irrigated agriculture in the Middle East, Africa,
Central Asia [2,3], and Europe [4]. Over the past 20 years, the global arable land area has
increased by 16%. Increasing the proportion of irrigated agriculture allows for a 25–35%
increase in the productivity of agricultural land on average.

On a planet-scale, 23% of arable land is salinised, and 37% undergo the salinisation
process [5], with a total degraded land area of 11,737 million km2. Most of them are located
in arid [6] or semi-arid climates [7]. Based on information from FAO [8], nearly 830 million
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hectares faced potential salinisation in 2015, experiencing elevated salt levels resulting from
irrigation with water of poor quality containing high mineral contents (exceeding 1 g/L).

The presence of Haplic Chernozems in the southern part of Ukraine (the Steppe zone)
and the construction of the Kakhovka Reservoir on the Dnieper River in the mid-20th
century allowed for the development of irrigated agriculture. The maximum area of irri-
gated land was reached in 1990—2598 thousand hectares, or 6.2% of the total agricultural
land. With the gain of independence in 1991, political transformation and economic restruc-
turing in Ukraine led to the decline of the agricultural sector. Due to the lack of funding,
proper maintenance, and the physical wear of reclamation infrastructure, in 2018, the actual
irrigated area in Ukraine was approximately 460 thousand hectares [9], and due to wartime
actions in 2022, it decreased to 300 thousand hectares and continues to decrease.

One of the key factors in the cessation of irrigation was the high cost and deterioration
of water quality due to the excessive anthropogenic load and climate changes in the last
70 years [10–12]. According to Ukrainian standards [13], irrigation water is classified into
three quality classes: I—suitable, II—limited suitability, and III—unsuitable. The water-
quality class [10] is determined by the risk of irrigation salinisation, waterlogging, soil
salinisation, and toxic impact on plants. According to this classification, the current struc-
ture of irrigated agricultural land with water of different qualities is 13.1% (class I), 84.2%
(class II), and 2.7% (class III). This structure shows that the largest areas are irrigated with
water of limited suitability for irrigation. It is worth noting that among these 388 thou-
sand hectares (as of 2018), the main negative impacts of irrigation water on soils are as
follows: 342 thousand hectares are at risk of waterlogging and 46 thousand hectares are at
risk of toxic effects on plants and secondary salinisation. About 13 thousand hectares are
irrigated with water of high mineralisation, which is not suitable for irrigation [14]. This
requires the implementation of measures to prevent or slow the processes of salinisation
and alkalinisation when irrigating with poor-quality water [15,16].

Despite numerous scientific studies in the field of the chemical reclamation of irrigated
soils and water, this problem remains relevant. The extensive negative impact of irrigation
in southern Ukraine on the soil’s agroameliorative condition is supported by numerous
scientific studies [17,18]. This necessitates the adoption of novel strategic approaches to
land management in these areas [19] and the restoration of fertility to chernozem soils [20].

Questions about the expediency and effectiveness of gypsum application to Haplic
Chernozems with a low degree of salinisation remain unresolved.

In the conditions of irrigated agriculture in Ukraine, agroameliorative measures [10]
with the use of chemical amelioration are widespread, involving the introduction of sub-
stances of natural or technogenic origin into the soil [21]. Gypsum is given preference in
this regard [22–24]. Gypsum application has been established to increase the content of
exchangeable calcium and significantly reduce the amount of sodium absorbed. However,
even with high doses of gypsum, it is not possible to achieve the required level of saturation
of the soil solution with calcium in the absence of irrigation [25,26]. By displacing sodium
from the soil-absorptive complex with calcium or other divalent or trivalent cations, the
mobility of soil colloids decreases, alkalinity decreases, and the availability of nitrogen,
phosphorus, potassium, and calcium for plants increases, while microbiological processes
are activated [27–31]. At the same time, the application of gypsum limits or weakens
alkalinisation processes only, but does not eliminate them completely [32,33].

There are also debates about approaches to calculating the doses of ameliorants and the
peculiarities of the interaction of gypsum with soil and water. Compliance with ecological
aspects of ameliorant application is also relevant, which necessitates the search for new,
more effective measures in terms of resource and energy conservation and environmental
safety [32,34–37].

The increase in the area of degraded soils is exacerbated by the military aggression of
the Russian Federation on the territory of Ukraine. The war has already led and continues
to lead to catastrophic consequences for the environment, including water and soil pollu-
tion [38]. According to the authors of [39], the undermining of the Kakhovska Hydroelectric
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Station has resulted in the interruption of water supply for 31 irrigation systems in the
Dnipropetrovsk (30%), Zaporizhzhia (74%), and Kherson (94%) regions. Currently, farms
are forced to use mineralised soil and mine waters, leading to an annual increase in the risk
of further salinisation [40].

The use of phosphogypsum can become one of the important directions for the recla-
mation and amelioration of soils contaminated due to direct and indirect military actions.
The incorporation of phosphogypsum into the soil improves aeration, porosity, infiltration,
oxygen supply, and the intake of silicon-containing substances with a strong potential for
coagulation with organic soil compounds. The practice of using phosphogypsum as an
ameliorant is gaining significance [41]. The formation of organo-mineral complexes with
phosphogypsum in the soil occurs due to the binding of labile organic substances into
stable aggregate formations with colloid micro-particles of phosphogypsum.

It is also possible to highlight the features of phosphogypsum that allow it to be used
for the development of ecosystem services:

- Phosphogypsum serves as a source of macro- and microelements for the development
of various ecotrophic groups of microorganisms;

- The acidic reaction of phosphogypsum creates favourable conditions for the break-
down of organic compounds, such as surfactants, hydrocarbons, and other substances,
allowing it to be composted with waste containing such substances as sewage sludge,
straw, manure, and bird droppings;

- Composting various types of organic waste together with phosphogypsum, as well as
its use together with digestate, significantly improves the sanitary-epidemiological
situation and can find practical applications in environmental remediation.

Alongside its positive qualities, this ameliorant also possesses negative characteristics.
Like any other ameliorant, it does not reduce the content of toxic salts in the root-containing
layer of the soil, and therefore does not prevent the potential irrigation salinisation of the
soil. It is not sufficiently soluble in water to completely eliminate the danger of irrigation
salting in soils irrigated with third- and second-class waters at risk of salinisation. Even
with the application of very high doses of this ameliorant, the residual salting of the soil to a
weak and moderate extent is possible [42]. It is also necessary to take into account harmful
impurities (heavy metals, radionuclides, etc.) that can be present in phosphogypsum as
waste from the chemical industry should be considered, depending on the raw materials
and technological processes of mineral-fertiliser production [42].

In places where phosphogypsum accumulates, heavy metals undergo horizontal and
vertical redistribution in the soil profile due to leaching from dumps and precipitation,
which can lead to their subsequent migration to aquifers [43,44]. Therefore, expanding the
possibilities of using phosphogypsum in an environmentally friendly manner is an urgent
necessity not only in Ukraine but also worldwide [45].

For the application of ameliorants to the soil, their doses are calculated individually
for each specific case. The appropriateness of using a particular calculation method is
determined by the properties and genesis of solonetzic soils. Three types of ameliorant
doses are distinguished as ameliorative, ecological, and agronomic. The ameliorative doses
are based on the difference between the total amount of exchangeable sodium (Na, meq
per 100 g of soil) and its permissible content (K) from the total exchange capacity of the
absorption layer (T, meq per 100 g of soil), determining the amount of exchangeable sodium
that must be replaced with calcium in 1 g of soil [46]:

0.086·(Na − K·T)
100

(1)

To remove excess exchangeable sodium from the soil’s calculation layer N with a
volume mass of d, it is necessary to introduce calcium ameliorants [46]:

Da = 0.086·(Na − K·T)·H·d, (2)



Agriculture 2024, 14, 408 4 of 19

where 0.086 is the equivalent molar mass of gypsum, meq; H is the depth of the soil layer,
cm; Na is the total content of exchangeable sodium, meq per 100 g of soil; T is the layer’s
cation-exchange capacity, meq per 100 g of soil; K is the permissible content of exchangeable
sodium in the soil, a fraction of T; and d is the volume mass of the soil layer, g/cm3.

For soils with a low sodium content, of less than 5%, the calculated dose of ameliorant
is based on the coagulation limit of the colloidal fraction of the soil [46]:

Da = 0.086·KCa·H·d, (3)

where KCa is the amount of calcium in gypsum necessary for the coagulation of colloids in
the soil, meq/100 g of soil.

The purpose of our research is to assess the agroecological condition of soils that
have been irrigated for a long time, as well as to improve existing measures to slow the
degradation processes associated with the salinisation of irrigated soils by introducing
phosphogypsum.

The practical experience of using phosphogypsum under the conditions of the Steppe
zone of Ukraine (Haplic Chernozems) is represented by a small number of scientific
publications [14,16,32]. Therefore, we hope that this study can be useful in expanding
scientific knowledge and approaches in the fight for the ecological improvement of soil
cover in similar climatic zones and conditions of irrigated agriculture.

2. Materials and Methods
2.1. Materials of Inverstigation

Long-term research on detecting changes in the salt composition of soil water extract,
which exhibits signs of salinity, has been initiated in the village of Oleksandrivka in the
Dniprovsky district of the Dnipropetrovsk region, Ukraine (48◦31.656′ N, 35◦13.431′ E—
48◦31.665′ N, 35◦13.428′ E).

The obtained data from experimental research were processed to identify certain
regularities in the nature of relationships between levels of factors and response functions.
For this purpose, calculations were carried out based on the results of experimental studies,
including mean values; variances; mean square deviations; absolute errors; relative errors;
coefficients of variation; correlation coefficients; regression coefficients; confidence intervals
for the mean value; and least significant difference (LSD). To perform these calculations,
the software–information complex “Agrostat (v01)” [47] was used as an add-on to the
Microsoft Office Excel 2003 program.

2.1.1. Soil Properties and Composition

Perennial studies were conducted on Haplic Chernozems (Loamic, Aric), which occupy
42.3% of arable land in the Dnipropetrovsk region. Our research has determined that the
soil in the study area has low humus content, with 2.5% humus in the ploughed layer of
soil and 0.3% at a depth of 10 m.

According to M.O. Kachinsky, the granulometric composition of the research soil was
determined by the ratio of fractions of physical clay (all mechanical elements <0.01 mm)
and physical sand (particles ranging in size from 1 mm to 0.01 mm) [48]. In the research
soils, the physical sand content was 72.5%, and physical clay was 27.4%. A significant
indicator of agricultural soil is its density. Density or volumetric weight of the soil was
determined as the mass per unit volume of absolutely dry soil taken in its natural state
(with undisturbed structure) in g/cm3 [49]. The highest compaction, reaching 2.04 g/cm3,
was observed in the soil profile at a depth of 15–30 cm.

The research plot has been irrigated with mineralized water for over 50 years, which
has negatively affected the soil’s salt composition. Based on the presence of toxic salts
(0.48%), pH of 7.4–7.8, and SAR of 8.8, the soils are classified as moderately saline [50,51].
Examining a meter-deep soil profile, the highest salt concentration was observed in the
top layer (0–30 cm), decreasing gradually below this depth. According to the respective
ratios (Ca2+/Mg 2+, Na1+/Mg 2+, Na1+/Ca2+), the prevailing salinity type in the research
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areas is sulphate and sodium. The determination of cation-exchange capacity was based
on the methods used in [52]. The exchangeable sodium content exceeds 3% of the soil-
absorption complex capacity of 20.1–26.4 meq per 100 g of soil, indicating the development
of salinisation processes in the upper soil layer (0–30 cm). The groundwater mineralization
at the research site, at a depth of 5 m, is 15 g/L.

Therefore, the research plots are representative of typical soils in this region and the
chernozem zone of irrigated agriculture in Ukraine. However, they show signs of physical
and physicochemical salinity in the soil layer. Visually, when moist, the soil is highly
plastic, sticky, and swells significantly. It easily forms aggregates due to the displacement of
calcium by sodium in the soil-absorbing complex. Upon drying, the soil mass is compressed,
resulting in low water permeability.

For irrigation of the research plots, water from the Samara River reservoir was utilized.
Mineralization was determined as the sum of major cations (potassium + sodium, magne-
sium, and calcium) and anions (chlorides, sulphates, carbonates, and bicarbonates). The
mineralization of irrigation water ranged from 2.3 to 3.1 g/L [12,53] and varied significantly
throughout the irrigation period (see Table 1). According to agronomic criteria, the chemical
composition of water remained chloride–sulphate and sodium–magnesium throughout the
research period. An Irtec reel-type machine was employed for sprinkler irrigation, and the
irrigation rate during the research years ranged from 1150 to 1700 m3/ha.

Table 1. Results of the analysis of irrigation water from the reservoir on the Samara River for the
study years.

No. Control Indicator
Results of Water Analysis by Year

1st Year
2014

2nd Year
2015

3rd Year
2016

4th Year
2017

5th Year
2018

1 pH 8.2 7.3 7.6 8.01 8.33
SD 0.13 0.2 0.34 0.1 0.24

3 Sulfates, mg/L 899.5 999.43 903.5 1331.5 1154
SD 3.41 4.83 4.09 5.35 5.04

4 Chlorides, mg/L 453.76 564.76 466.06 490.2 520
SD 2.53 2.91 2.41 2.73 3.07

7 Hydrocarbons, mg/L 306.5 393.85 310.56 380.56 551
SD 2.05 2.38 2.27 2.30 3.39

8 Carbonates, mg/L - - - - -

9 Calcium, mg/L 176.09 159.29 169.9 220.94 203
SD 1.37 1.24 1.34 1.89 1.74

10 Magnesium, mg/L 180.1 202 179.69 200.69 201.41
SD 1.57 1.64 1.50 1.67 1.71

11 Potassium + sodium, mg/L 330 423 340.85 460.54 478
SD 2.15 2.44 2.27 2.56 2.84

12 The sum of ions, mg/L 2345.95 2742.33 2370.56 3084.43 3107.41
SD 15.41 16.35 15.94 16.89 17.04

2.1.2. Phosphogypsum Composition

Phosphogypsum was supplied from the dumps of the Dnipro Mineral Fertiliser Plant
(Kamianske, Dnipropetrovsk region, Ukraine) [54], whose reserves reach almost 15 million
tons. The characteristics of phosphogypsum are provided in Table 2, and they meet the
criteria for agricultural use.

The radiation background of phosphogypsum, soil, and the experimental site was
determined using a radiometer that measures the flux of gamma radiation within the range
of 0 to 10,000 s−1; and the power of exposure dose of gamma radiation within the range of
0 to 3000 microroentgens per hour (µR/h).
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Table 2. Characteristics of phosphogypsum.

No. Indicator Norm Indicator Actual Values of the
Phosphogypsum Studied

1 Aggregate state, appearance, smell
Wet, loose product from white

to brown in colour with a
specific smell

White, odorless,
wet, loose product

2 Mass fraction of calcium sulfate (CaSO4·2H2O), % not less 80 98.4
3 Mass fraction of hygroscopic water, % no more 28 4.5
4 Mass fraction of water-soluble fluorine compounds, % no more 0.6 0.1
5 Mass fraction of total phosphates (P2O5), % no more 10 1
6 Hydrogen index 6 5

2.2. Methodology of Field Research

The research plan (Figure 1) envisions the application of phosphogypsum in the
reserve for three years with (i index) and without irrigation at various calculated rates [46]:

- 1.4 t/ha—ameliorative dose for displacing exchangeable sodium in saline-sodic soils
with malonic reactions;

- 3 t/ha—dose of soil calcium supplementation;
- 6 t/ha—dose calculated by the coagulation-peptisation method.

Phosphogypsum at rates of 1.4 and 3 t/ha was applied during spring cultivation,
while 6 t/ha was applied during autumn ploughing. The area of one experimental plot is
25.2 m2. The experiment was repeated four times using systematic plot placement.
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The impact of chemical amelioration on soil quality was determined by changes in the
soil’s water-extraction indicators based on anionic and cationic values. To determine water-
soluble salts (anions, cations), and pH level, a water extract was utilized. This extract con-
sisted of distilled water and air-dried soil with particle sizes ranging from 1 to 2 mm, with
a soil-to-water ratio of 1:5. The soil was in an air-dry state. The ionic composition (anions,
cations) of the water extract was determined using the titration technique. The type of salin-
ity was established by corresponding ratios of major anions (Cl1−/SO4

2−, HCO3
1−/Cl1,

HCO3
1−/SO4

2−) and cations (Ca2+/Mg2+, Na1+/Mg2+, Na1+/Ca2+) (Tables 3 and 4).



Agriculture 2024, 14, 408 7 of 19

Table 3. Type of soil salinisation by anionic composition based on [55].

Type of Salinity Ratio of Anions, meq
Additional Conditions

Cl1−/SO42− HCO31−/Cl1− HCO31−/SO42−

Hydrocarbonate - >2.5 >2.5 -
Chloride >2.5 - - -

Sulphate–chloride 2.5–1.0 - - -
Chloride-sulphate 1.0–0.25 - - -

Sulphate <0.25 - - -
Soda - >2.5 -

HCO3
1− > Ca2+ + Mg2+

Na1+ > Mg2+

Na1+ > Ca2+

Sodium chloride - 2.5–1.0 -
Sodium chloride - 1.0–0.25 -
Sulphate–sodium - - 2.5–1.0

Soda-sulfate - - 1.0–0.25

Sulphate or chloride-
hydrocarbonate - >1.0 >1.0

Na1+ < Ca2+

Na1+ < Mg2+

HCO3
1− > Na1+

Table 4. Type of soil salinisation by cation composition based on [55].

Type of Salinity Ratio of Anions, meq

Ca2+/Mg2+ Na1+/Mg2+ Na1+/Ca2+

Calcium >2.5 - -
Magnesium–calcium 2.5–1.0 - -
Calcium–magnesium 1.0–0.25 - -

Magnesium <0.25 - -
Sodium - >2.5 >2.5

Magnesium–sodium - 2.5–1.0 -
Sodium–magnesium - 1.0–0.25 -

Calcium–sodium - - 2.5–1.0
Sodium–calcium - - 1.0–0.25

The degree of salinity was determined by calculations of the percentage content of
toxic ions (SO4 tox., HCO3 tox., Ca tox.) considering active calcium (Ca1) and the sum of toxic
salts (Stox. salts) at various ratios of Ca2+, HCO3

1− and SO4
2− in the water extract [55]:

(1) For HCO3
1− less than Ca2+,

Ca1 = Ca2+ − HCO3
1−

SO4 tox. = SO4
2− − Ca1

Stox. salts = (Na1+ + Mg 2++ Cl1− + SO4 tox.)

(2) For HCO3
1− more than Ca2+,

HCO3 tox. = HCO3
1− − Ca2+

Stox. salts = (Na1+ + Mg 2++ Cl1−+ SO4
2− + HCO3 tox.)

(3) For SO4
2− less than Ca2+,

Ca1 = Ca2+− HCO3
1−

Ca tox. = Ca1 − SO4
2−

Stox. salts = (Ca tox. + Na1+ + Mg 2++ Cl1−).

The degree of soil salinity was determined taking into account the “cumulative ef-
fect” of toxic salts. Since salt mixtures are less toxic than their pure accumulations, the
“cumulative effect” of mixtures is considered, which is less toxic than individual ions.
The “cumulative effect” of toxic ions is expressed in equivalents of chlorine (eCl, meq
per 100 g of soil) based on the following relation: 1Cl1− = 0.1CO3

2− = (2.5–3.0)HCO3
1− =

(5.6–6.0)SO4
2−. Table 5 shows the toxicity of major salts (the most harmful ones are located
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below the line) and the sequence of their combinations (corresponding to the numbers in
the middle of the table).

Table 5. Scheme of ion binding in toxic salts based on [55].

Ions CO32− HCO31− SO42− Cl1−

Ca2+ — 2 5 8
Mg2+ — 3 6 9

Na1+ + K1+ — 4 7 10′

Soils with a salt content of less than 0.3% are considered non-saline, and those with a
weak salinity have a content of 0.3–1.5%.

Another indicator for determining soil salinity was the sodium adsorption ratio (SAR)
according to the Gapon formula [56]

SAR = Na1+/[(Ca2+ + Mg2+)/2]1/2, (4)

The dose of ameliorant by the coagulation–precipitation method was determined by
the method used in [46]: a sample (100 g of dry soil) taken from the corresponding horizon
was mixed with various amounts of phosphogypsum (20, 50, 100, 150, etc., mg) and then
poured into cylinders, into which 100 mL of water was poured. After that, the mixture was
carefully stirred and left for a day to sediment the soil colloids. The minimum weight of
phosphogypsum at which complete the sedimentation of the suspension occurred is the
required amount of calcium.

The particular distinction of our research lies in the use of technogenetic phosphogyp-
sum as a waste product of the technological production of mineral fertilisers, more precisely,
the product of phosphoric acid production. In connection with this, we established an
environmentally safe dose of its application using the following formula:

Da =
(MPC − C2)

C1
· H · d

Cg(100 − W)
· 103, (5)

where MPC is the maximum permissible concentration of chemical elements in the soil,
mg/kg; C1 and C2—the content of the chemical element in the ameliorant and soil, respec-
tively, mg/kg; H—the depth of the plough layer of soil, cm; Cg—the content of gypsum
(CaSO4· 2H2O) in the ameliorant, %; and W—the moisture content of the ameliorant, %.

Calculating the dose of phosphogypsum by the specified formulas leads to pure
gypsum, and in the presence of impurities, adjustments are made for ballast. The amount
of gypsum to remove sodium from the soil sorption complex with weak soil salinity usually
ranges from 2 to 4 tons per hectare.

3. Results

The dynamics of the content of toxic salts in the soil during years of research and the
influence of phosphogypsum dose were described.

The results of our own research on the chemical composition of water extract in
meq/100 g of soil for the years of observation are presented in Table 6. The type of salinity
based on the anion composition is sulphate for all experimental variants and for all years of
observation is presented. An exception is the variant Ci in the fifth year of the study with
chloride–sulphate salinity. This is explained by an increase in the indicator of toxic ions
equivalent to chlorine (2.08 meq) (Figure 2).
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Table 6. The chemical composition of the water extract of the soil during the years of research,
meq/100 g of soil.

Anions/Cations
Factors Year of Research

Factor A: Irrigation Factor B: Meliorant First,
2014

Second,
2015

Third,
2016

Fourth,
2017

Fifth,
2018

HCO3
1−

without irrigation

C 0.3243 0.5900 0.3480 0.3879 0.3600

M1.4 0.1693 0.5464 0.2800 0.3423 0.3402

M3 0.2970 0.4862 0.2730 0.3350 0.3395

M6 0.2892 0.2560 0.2580 0.3300 0.4303

irrigation

Ci 0.2200 0.5750 0.3400 0.3596 0.3587

M1.4i 0.3188 0.4800 0.3155 0.3580 0.1894

M3i 0.3700 0.4340 0.2918 0.3639 0.3467

M6i 0.3699 0.5670 0.2490 0.3564 0.3410

A—assessment of the significance of partial differences LSD05 irrigation 0.0365 0.0502 0.0393 0.0368 0.0430

LSD05—introduction of meliorants 0.0346 0.0525 0.0368 0.0355 0.0355

B—assessment of the significance of average (main) effects LSD05-irrigation 0.0183 0.0251 0.0197 0.0184 0.0215

LSD05—introduction of meliorants 0.0245 0.0372 0.0260 0.0251 0.0251

Cl1−

without irrigation

C 0.9900 0.7000 0.8970 0.9324 0.9590

M1.4 1.1589 0.9870 1.1987 1.1160 1.1200

M3 1.0957 1.0000 1.0987 1.0570 1.1000

M6 1.1220 0.8790 0.8987 0.8670 0.9640

irrigation

Ci 1.2150 1.2480 1.2700 1.2560 1.3570

M1.4i 0.9826 0.6270 0.8500 0.8923 0.8753

M3i 0.8980 0.6211 0.8560 0.8760 0.8750

M6i 0.8760 0.6120 0.7970 0.8327 0.7845

A—assessment of the significance of partial differences LSD05 irrigation 0.1313 0.0997 0.0900 0.0957 0.1158

LSD05—introduction of meliorants 0.1056 0.0981 0.1141 0.1020 0.1101

B—assessment of the significance of average (main) effects LSD05-irrigation 0.0656 0.0499 0.0450 0.0478 0.0579

LSD05—introduction of meliorants 0.0747 0.0694 0.0807 0.0722 0.0779

SO4
2−

without irrigation

C 2.3067 2.5070 2.4217 2.3006 2.2530

M1.4 3.1700 2.7884 2.6940 3.2000 2.8800

M3 3.2990 2.8000 2.7768 3.3586 3.0200

M6 3.3250 3.0000 2.8453 3.4500 3.1466

irrigation

Ci 2.9907 2.7500 2.6500 2.7548 2.7800

M1.4i 2.7427 2.7000 2.5215 2.8090 2.7880

M3i 3.0380 3.0195 2.7640 3.2967 3.2600

M6i 3.4248 3.3660 3.1751 3.6034 3.5770

A—assessment of the significance of partial differences LSD05 irrigation 0.3062 0.2447 0.3625 0.3370 0.3328

LSD05—introduction of meliorants 0.3468 0.3174 0.2812 0.3287 0.3000

B—assessment of the significance of average (main) effects LSD05-irrigation 0.1531 0.1224 0.1812 0.1685 0.1664

LSD05—introduction of meliorants 0.2452 0.2244 0.1988 0.2324 0.2121
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Table 6. Cont.

Anions/Cations
Factors Year of Research

Factor A: Irrigation Factor B: Meliorant First,
2014

Second,
2015

Third,
2016

Fourth,
2017

Fifth,
2018

Ca2+

without irrigation

C 0.6210 0.5970 0.5736 0.5800 0.6000

M1.4 0.7300 0.7000 0.6780 0.9500 0.8904

M3 1.0240 1.0000 0.9870 1.3486 1.2430

M6 1.5600 1.4780 1.4250 2.0240 1.8760

irrigation

Ci 0.2537 0.3130 0.3200 0.3000 0.3123

M1.4i 1.1246 1.1000 1.0923 1.2900 1.2794

M3i 1.5790 1.5200 1.4890 2.1526 2.1000

M6i 2.1570 2.1000 2.0000 2.7345 2.6900

A—assessment of the significance of partial differences LSD05 irrigation 0.1758 0.1545 0.1353 0.1697 0.1952

LSD05—introduction of meliorants 0.1434 0.1245 0.1215 0.1907 0.1655

B—assessment of the significance of average (main) effects LSD05-irrigation 0.0879 0.0772 0.0677 0.0848 0.0976

LSD05—introduction of meliorants 0.1014 0.0880 0.0859 0.1349 0.1170

Mg2+

without irrigation

C 0.5800 0.4900 0.4700 0.4872 0.4500

M1.4 0.3633 0.4242 0.3950 0.7083 0.7280

M3 0.6280 0.3952 0.4015 0.7920 0.8611

M6 0.6875 0.3642 0.3890 0.5230 0.8580

irrigation

Ci 0.1560 0.2780 0.2840 0.2040 0.3689

M1.4i 0.5208 0.4500 0.3667 0.5693 0.7400

M3i 0.4270 0.4656 0.4200 0.4160 0.7820

M6i 0.2670 0.4770 0.4390 0.4000 1.0000

A—assessment of the significance of partial differences LSD05 irrigation 0.0590 0.0477 0.0452 0.0613 0.1149

LSD05—introduction of meliorants 0.0473 0.0462 0.0410 0.0528 0.0719

B—assessment of the significance of average (main) effects LSD05 irrigation 0.0295 0.0238 0.0226 0.0307 0.0575

LSD05—introduction of meliorants 0.0334 0.0327 0.0290 0.0374 0.0509

Na1+

without irrigation

C 2.4200 2.7100 2.6231 2.5537 2.5220

M1.4 3.4049 3.1976 3.0997 3.0000 2.7218

M3 3.0397 2.8910 2.7600 2.6100 2.3554

M6 2.4887 2.2928 2.1880 2.1000 1.8069

irrigation

Ci 4.0160 3.9820 3.6560 3.8664 3.8145

M1.4i 2.3987 2.2570 2.2280 2.2000 1.8333

M3i 2.3000 2.0890 2.0028 1.9680 1.5997

M6i 2.2467 1.9680 1.7821 1.6580 1.0125

A—assessment of the significance of partial differences LSD05 irrigation 0.3165 0.2883 0.3776 0.3219 0.5010

LSD05—introduction of meliorants 0.3559 0.3831 0.3302 0.3772 0.3807

B—assessment of the significance of average (main) effects LSD05 irrigation 0.1583 0.1441 0.1888 0.1609 0.2505

LSD05—introduction of meliorants 0.2517 0.2709 0.2335 0.2667 0.2692
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Figure 2. The content of toxic salts in the soil (for five years of research).

The most dangerous compounds for the growth and development of plants are precisely
those containing chlorine. It has been proven that an excessive amount of salts in the root
zone of the soil leads to an increase in osmotic pressure, reducing the water absorption
capacity of plants and the accumulation of specific toxic ions in them [57–59]. All chlorine
salts are toxic to agricultural crops. The increase in chloride ions is explained by their
influx with irrigation water. We observed a clear tendency for an increase in chlorine
ions in irrigated experimental variants over the years of research. The control irrigated
plots had 33% more chloride ions compared to non-irrigated variants. The application of
phosphogypsum during irrigation reduced the concentration of Cl by 13–34% compared to
the irrigated control variant.

The concentration of chlorine in the soil with the application of phosphogypsum
without irrigation did not change significantly: for doses of 1.4 t/ha of phosphogypsum,
the average indicators during the years of the study were at the level of 1.14 meq/100 g of
soil; for doses of 3 and 6 t/ha, the concentration of chlorine decreased to 0.9 meq/100 g
of soil.

The absence of ameliorants led to a decrease in the levels of SO4
2− ions in the control

variants (C and Ci). This trend is explained by the leaching of sulphates with rainwater
and irrigation water, corresponding to previous research [60]. In the non-irrigated variants
(C), the amount of sulphates gradually decreased in the control area.

The research results (Table 2) on the anion composition showed an increase in SO4
2−

ions in all variants and a 15% increase in irrigated variants compared to the control (C).
Additionally, an increase in sulphate ions was observed when phosphogypsum was applied
in irrigated variants (M1,4 i, M3 i, M6 i) with an average value of 3.09 meq/100 g of soil.
Conversely, when ameliorants (M1,4, M3, M6) were applied without irrigation, a decrease in
the content of this ion was noted. This is explained by a greater influx of sulphates into the
soil along with phosphogypsum application and a slight influx along with irrigation water.

No clear pattern of changes in bicarbonates was established over the years of study. A
reduction in the quantity of HCO3

1− was observed when irrigated with the application
of phosphogypsum. On average, the decrease ranged from 0.04 to 0.09 meq/100 g of soil
compared to control plots, where only irrigation without ameliorants was carried out.

On control plots without irrigation and without the application of an improvement
(C), an increase in hydrocarbonates by 0.04 meq/100 g of soil was observed in the fourth
year of the study, with a gradual decrease in the fifth year. This trend persisted in variants
with phosphogypsum and without irrigation, as in other studies [61].

Various doses of phospho-gypsum had no significant effect on the concentration of
hydrocarbons in the soil. An increase in HCO3

1− was observed with a dose of 3 t/ha in the
irrigated variant, reaching 20% compared to the norm of 1.4 t/ha, while in the absence of
irrigation, this difference increased to 5%. A significant increase was noted in the fifth year
of the study, reaching 0.4 meq/100 g of soil in the non-irrigated variant (M6).
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Regarding cation composition, the highest amount was attributed to sodium ions in
all study variants, resulting in a sodium salinity type. The calcium–sodium salinity type
was observed in the fifth year of the study in the control variant without irrigation (C). The
amount of sodium increased significantly in the irrigated plots, indicating a substantial
flow of this ion with irrigation water. When comparing control plots, the amount of Na1+

increased by 34% in the irrigated variant on average (Table 2).
The application of phosphogypsum, as in many previous studies [14,60], led to a

reduction in the sodium-ion content [22]. In this case, salinisation processes caused by an
excessive sodium content in the soil absorption complex are slowed down, resulting in
improved physical properties of the soil. There is a reduction in the crust on the soil surface,
an improvement in the action of soil capillaries, and an enhancement in the movement of
air and water in the soil.

In variants with the application of phosphogypsum and irrigation, the sodium content
decreased by 20–43%. The application of phosphogypsum in non-irrigated plots led to a
reduction in sodium ions by 15–32% compared to the non-irrigated control.

The most significant change in the sodium ion content (a decrease of 2.0 meq/100 g
of soil) was observed in the variant with a dose of 6 t/ha (M6 i) in the fifth year of the
study. The difference in values compared to the control irrigated variant with a dose of
1.4 t/ha was 1.8 meq/100 g of soil. At doses of 3 t/ha and 6 t/ha, this difference was 2.0 and
2.6 meq/100 g of soil, respectively. Variants with a dose of 6 t/ha reacted best to irrigation,
with a difference of 2.6 meq/100 g of soil compared to the control in reducing Na1+ ions.

According to FAO standards, the degree of soil salinisation depends on the sodium-
adsorption ratio (SAR). In our case, SAR values were obtained based on cationic indicators
over the 5 years of the study (Figure 3).

1 
 

 
 
 
Figure 2 
 

 
 
Figure 3 

Figure 3. Indicators of the sodium-adsorption ratio according to research options for five years of
observation.

The sodium-adsorption ratio indicator (SAR) shows that the degree of soil salinity
for all research variants is characterised as slightly saline, while for the second variant (C),
salinity is moderate. The non-irrigated control variant almost did not change the SAR value
during the observation period and averaged 3.54. The highest average value over the past
three years, 7.62, was associated with the irrigated control variant (Ci).

The application of phosphogypsum led to a significant reduction in the sodium-
adsorption ratio in the irrigated variants. The application of phosphogypsum at a dose of
1.4 t/ha resulted in a 68% reduction in the indicator compared to the control irrigated plot.
At application doses of 3 and 6 t/ha, the SAR indicator decreased to 81%. In non-irrigated
variants, there was also a tendency for a decrease in the sodium-adsorption ratio of values
ranging from 3.52 to 1.9. The lowest indicators were observed in the experimental plots
where phosphogypsum was applied at a dose of 6 t/ha [62].
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Our research has shown that mineralised water (2.3–3.0 g/L) on ordinary chernozem
soils exhibits signs of salinisation: an increase in the exchangeable sodium and magnesium
content and a decrease in the percentage of exchangeable calcium. Although the chemical
characteristics of the soil were not very high, significant signs of salinisation were visually
observed: the soil was structureless, sticky and dense. This was observed in similar studies
due to the accumulation of salts in the root zone of the soil, leading to the deterioration of
physical–mechanical and hydro-physical properties [63].

In the control plots (C and Ci in Table 7), rapid salinisation processes were observed,
especially in irrigated variants.

Table 7. Change of exchangeable cations and pH under the influence of phosphogypsum in the arable
layer of the soil (30 cm) over the years of research.
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C 28.76 4.03 7.4 28.62 4.19 7.2 28.34 4.24 7.4 28.53 4.25 7.5 28.3 4.19 7.5

Ci 28.87 4.50 7.5 28.91 5.00 7.4 28.27 5.13 7.5 28.58 5.18 7.8 28.48 5.27 7.9

M1,4 29.43 2.65 7.37 29.67 2.70 6.97 26.79 2.58 7.34 29.29 1.67 7.34 28.45 1.58 7.25

M3 30.01 2.37 7.29 29.35 2.30 6.89 27.28 2.27 7.26 29.59 1.52 7.27 28.97 1.48 7.18

M6 30.63 2.12 7.17 29.37 2.10 6.7 27.88 2.08 7.2 30.37 1.25 7.24 29.57 1.01 7.12

M1,4 i 27.21 2.13 7.43 26.94 2.00 7.0 26.76 1.72 7.38 27.65 1.23 7.41 27.43 1.09 7.34

M3 i 29.96 1.54 7.36 28.35 1.43 6.91 27.88 1.36 7.3 29.7 1.05 7.35 28.86 0.97 7.27

M6 i 28.27 1.49 7.22 27.89 1.37 6.75 27.57 1.27 7.21 28.43 0.90 7.31 27.95 0.89 7.2

During 5 years of research on experimental plots (C), the exchangeable sodium con-
tent under irrigation conditions increased from 4.5% to 5.27% of the sum of exchangeable
cations [52]. In the non-irrigated control (C), the average exchangeable sodium content was
4.28%, which was 15% lower than the corresponding value under irrigation. However, even
in this case, secondary soil salinisation processes did occur. The calcium-to-magnesium
exchange ratio in variant Si is 2.53, while in variant C, it is 2.76, indicating the displace-
ment of exchangeable calcium by magnesium from the soil-exchange complex. The total
exchangeable cations in the control variants remained significantly unchanged, ranging
from 28.3 to 28.87 meq/100 g of soil.

When phosphogypsum was applied at different doses, a decrease in exchangeable
sodium was observed compared to the control variant by 2.3% of the sum of exchangeable
cations without irrigation and by 3.7% under irrigation. This factor indicates a more
significant impact of phosphogypsum, especially under irrigation. Similar results were
observed in studies on exchangeable aluminium [64].

A decrease in exchangeable sodium was observed with an increase in the application
dose of phosphogypsum, confirming the results of previous research [65]. In variants with-
out irrigation, the lowest exchangeable sodium values were recorded when phosphogypsum
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was applied in the fall, under ploughing, at a dose of 6 t/ha–1.25% in the fourth year and
1.01% of the sum of exchangeable cations in the fifth year. The exchangeable sodium values
decreased from 4.48% to 1.01%, remaining within the range of weak salinisation.

Under irrigation, a decrease in exchangeable sodium was also observed with an
increase in the application dose of phosphogypsum. In this case, the best option was the
application of phosphogypsum under spring cultivation at a dose of 3 t/ha. The amount
of exchangeable sodium in the soil-exchange complex decreased to 0.98% of the sum of
exchangeable cations in the fourth year and to 0.89% in the fifth year of research. This
indicates a slowdown in soil salinisation processes.

4. Discussion

The global experience in combating soil salinity and alkalinisation indicates a signifi-
cant number of methods [66–69]: the prevention of water losses for filtration from irrigation
canals; using modern means to prepare irrigation water; implementing operational mea-
sures in accordance with water norms and methods of irrigation; adhering to scientifically
justified crop rotations with salt-tolerant crops; and applying chemical and biochemical
improvements, etc. The most effective but costly and energy-intensive method is flushing
the saline layer of soil with fresh water [63].

Long-term studies [70,71] have shown that the application of phosphogypsum on
irrigated saline chernozem soils has a positive effect on the anion–cation composition of
water leaching and the degree of salinity of these soils [72,73]. In experimental plots, with
the application of phosphogypsum during irrigation and without it, a sulphate type of
salinity was observed in terms of the anion composition. For the cation composition, a
sodium type of salinity was observed in all experimental variants.

Our research has shown that the salinity level in the experimental plots was initially
characterised as moderately saline based on the sum of toxic ions and gradually shifted
to a slightly saline type with the application of phosphogypsum at doses of 3 and 6 tons
per hectare under irrigation. The sodium-adsorption ratio (SAR) decreased by 23% on
non-irrigated plots with the addition of phosphogypsum, compared to the control. When
phosphogypsum was applied with irrigation, the SAR indicator decreased by 74.5% com-
pared to the control values. This confirms the theory of the increased ameliorative effect of
phosphogypsum under irrigation conditions.

Improvements in SAR indicators were also observed with the application of calcium-
containing ameliorants by other researchers [71]. Based on SAR indicators, the level of soil
salinity in the experimental plots was characterised as slightly saline in the variants with
phosphogypsum application and moderately saline in the control variants under irrigation.
According to SAR values (the ratio of sodium cations to calcium–magnesium), the best results
were obtained with the application of 6 tons per hectare of phosphogypsum under irrigation.

Under irrigation, more displacement of exchangeable sodium occurred with the appli-
cation of phosphogypsum at the standard dose (3 tons per hectare). Without irrigation, a
better substitution of exchangeable sodium with calcium was observed in variants with the
application of phosphogypsum at a dose calculated beyond the coagulation limit (6 tons
per hectare). This aligns with previous studies [22,46,74].

The implementation of chemical amelioration using phosphogypsum to prevent the
salinisation of ordinary chernozem has led to improvements in the indicators of the soil-
absorbing complex. It should be noted that this is an important factor in assessing the
environmental safety of the impact of phosphogypsum on the development of plant commu-
nities, aligning with other studies [75]. In research by the authors of [76], one of the largest
alluvial saline areas (Spain) was reclaimed by the application of phosphogypsum to reduce
Na1+ saturation. The discontinuation of the application of phosphogypsum was justified
because it did not support the vitality of the microbes. Stepwise discriminant analysis
identified two physiologically distinct types of soil microflora: one less active, present in
untreated soil, and the other more active, present in ameliorated soils [77].
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In some studies [65], elevated radiation levels were observed in both the ameliorant
(phosphogypsum) and the soil, whereas our studies showed optimal and even reduced
radiation levels for the investigated phosphogypsum. The radiation background of the
experimental site was 10.5 µR/h, the soil at the research site was 11.0–12.0 µR/h, and the
phosphogypsum itself was 12.5 µR/h.

Summarising a series of ecological regularities of the impact of phosphogypsum on
the soil complex, confirmed by previous studies in Ukraine [78,79], and consistent with
results obtained by other researchers in this field [80–82], we can use the phosphogypsum
to improve ecosystem services.

In this way, taking into account the volumes of already formed phosphogypsum and
that which is being formed [83,84], the strategic direction is not only its removal, transporta-
tion, and storage in landfills and sludge repositories but also its effective utilization as a
secondary raw material in an environmentally friendly manner. To reduce the environmen-
tal threat from phosphogypsum landfills, the development of a comprehensive approach is
important, including, on the one hand, measures aimed at preventing soil and water pollu-
tion from existing phosphogypsum dumps and, on the other hand, the implementation of
processing and utilisation technologies that minimise the entry of harmful components of
phosphogypsum into the ecosystem. Accordingly, the integration of existing technological
solutions have already been developed [85], and their improvement with a special focus
on prospective directions for the application of phosphogypsum in soil remediation as a
means of slowing down their degradation and post-war fertility restoration is necessary. In
the future, further research in this direction is planned.

5. Conclusions

In the Ukrainian Steppe environment, significant improvements in sodium-adsorption
ratio and exchangeable cations were observed by applying phosphogypsum at a rate of
6 t/ha during autumn mouldboard ploughing under non-irrigated conditions. Conversely,
under irrigation, the application of phosphogypsum was found to be more effective during
spring cultivation at a rate of 3 t/ha.

The tendency to increase the content of chloride ions on irrigated variants of the experi-
ment was revealed. The application of phosphogypsum during irrigation was determined
to reduce Cl1− concentration by 13–34% compared to the irrigated control.

When phosphogypsum was applied with irrigation, SAR decreased by 74.5% com-
pared to the control. This confirms the theory of strengthening the ameliorative effect of
phosphogypsum under irrigation conditions.

Further research is required to optimize phosphogypsum dosage for application to
different soil types.

6. Patents

Onoprienko D. M., Makarova T. K., Pugach A. M. Method of melioration of irrigated
solonetzic chernozems. Utility model patent of Ukraine. UA117577. 2017. 01A01B 79/00.
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